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Abstract

A new implementation of the lattice Boltzmann method (LBM) for fluid–structure interactions is presented. The idea

of the distributed-Lagrange-multiplier/fictitious-domain method (DLM/FD) is introduced in the framework of the lat-

tice Boltzmann algorithm. This implementation employs a fixed mesh for the solution of the fluid problem and a

Lagrangian formulation for the solid problem. The main advantage of the method is that the re-meshing procedure

normally required in the ALE method is circumvented. Numerical examples are provided to verify the algorithm

and illustrate the capacity of the method to deal with the fluid/elastic–solid interactions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Although the lattice Boltzmann method has been widely used in different areas of computational fluid

dynamics (CFD) [1,2], such as hydrodynamics, complex fluids, suspensions, turbulent flows, microfluidics

[3] and visco-elastic fluids [4,5], its applications in fluid–structure interaction problems [6,7] are still very

limited. Fluid–structure interactions include fluid/rigid–solid interactions and fluid/elastic–solid interac-

tions, and in both cases, how to cope with the moving fluid–solid interface is a critical problem.
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In the lattice Boltzmann method, a popular scheme for the fluid–structure interactions including the par-

ticulate flows [8,9] is based on the bounce-back rule enforcing the no-slip condition on the solid surface.

Such a scheme is suitable for the rigid-solid case where the motion of the solid is determined only by the

total force and torque exerted on the body. However, for the elastic-body case where the motion of the solid

is determined by the local stress state, a very fine mesh might be required for high accuracy. Recently, Feng
and Michaelides [10] combined the immersed boundary method [11] and the lattice Boltzmann method to

simulate the particulate flows, and provided an alternative approach to handle the moving fluid–solid

boundary in the lattice Boltzmann method.

There exist a variety of methods for the fluid–structure interactions where the flow is solved from the

Navier–Stokes equation rather than the lattice Boltzmann equation. These methods can be classified into

two categories, depending on whether the moving mesh or the fixed-mesh is used to solve the Navier–Stokes

equation. For the methods based on the moving mesh technique, such as the arbitrary Lagrangian–Eulerian

method (ALE) [12], the boundary-fitted mesh is updated with the structure motion, hence the boundaries
are described accurately. But the trade-off is the high computational cost due to the re-meshing procedure.

When the boundaries are complex such as concentrated particulate flows, re-meshing is very difficult, if not

impossible. For the fixed-mesh-based methods, the fluid mesh is not altered by the solid motion, and re-

meshing is not required, therefore such methods are simpler and more efficient than the moving-mesh-based

methods. The distributed-Lagrange-multiplier/fictitious-domain method (DLM/FD) is a popular fixed-

mesh-based method, and has been applied to the Dirichlet problem [13], external incompressible viscous

flows [14], fluid-rigid particle systems [15] and viscoelastic mobility problems [16]. Recently, Baaijens and

co-workers [17,18] extended the DLM/FD method to the fluid/elastic–body interactions, and Yu [19] de-
rived a more general formation. The basic idea of the DLM/FD method is that the fluid region is extended

to the solid region and a distributed Lagrange multiplier is introduced to enforce the fictitious fluids in the

solid region to satisfy the constraint of the solid motion. The distributed Lagrange multiplier can be phys-

ically interpreted as a pseudo body force, allowing the combination of the DLM/FD method and the LBM.

The purpose of this paper is to extend the LBM to fluid–structure interaction problems by using the idea

and technique of the DLM/FDmethod. The paper is organized as follows: Section 2 describes the governing

equations and the proposed LBM-DLM/FD method. The benchmark problem of the flow past a circular

cylinder is utilized to verify the method for the case of rigid-body in Section 3.1, and the power of the method
will be illustrated by the solution of an elastic beam flapping in a cylinder weak in Section 3.2.
2. Governing equations

2.1. Fluid domain

The fluid flow is solved by the lattice Boltzmann method. Unlike the continuum fluid equations, the lat-
tice Boltmznn equations are derived from a microscopic kinetics theory. The discrete lattice Boltzmann

equations of a single relaxation time model under external forces are reproduced here [2,20]:
fiðt þ dt; xþ eidtÞ ¼ fiðt; xÞ �
1

s
ðfi � f eq

i Þ þ F � ðei � ufÞ
qfc2s

f eq
i dt; ð1Þ
where fi(t,x) is the single-particle distribution function on the i-direction microscopic velocity ei, F is the

external force, s is the relaxation time that is related to the kinematic viscosity of fluids, dt denotes the time

step, Xi ¼ �1
sðfi � f eq

i Þ designates the collision operator, and uf, qf are the macroscopic velocity and mass

density of the fluid, respectively, which can be obtained from the distribution functions as follows [1]:
qf ¼
X
i

fi; qfuf ¼
X
i

fiei: ð2Þ
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For the so-called 2D 9-bit BGK model [21] used here, the discrete velocities are
e0 ¼ ð0; 0Þ;

ei ¼ cos
ði� 1Þ

4
p

� �
; sin

ði� 1Þ
4

p

� �� �
dx
dt
; i ¼ 1; . . . ; 8;

ð3Þ
where dx is the lattice spacing. The corresponding equilibrium distribution functions can be chosen in the

following form [21]:
f eq
i ¼ wiqf 1þ 3

c2
ðei � ufÞ þ

9

2c4
ðei � ufÞ2 �

3

2c2
u2f

� �
; ð4Þ
where c = dx/dt (cs ¼ c=
ffiffiffi
3

p
is the sound speed), and wi is the weight with the following values:
w0 ¼
4

9
;

wi ¼
1

9
; i ¼ 1; 3; 5; 7;

wi ¼
1

36
; i ¼ 2; 4; 6; 8:

ð5Þ
With the help of the Chapman–Enskog procedure, the macroscopic mass and momentum equations can be
recovered [1,21]:
oqf

ot
þr � ðqfufÞ ¼ 0; ð6Þ

o qfufð Þ
ot

þr � qfufufð Þ ¼ r � �c2sqfIþ qfmðruf þruTf Þ
� �

þ F: ð7Þ
In the D2Q9 model, the kinematic viscosity is m ¼ 1
6
ð2s� 1Þd

2
x
dt
. For a nearly incompressible fluid, we require

|uf| � |ei| and the evolution equation (1) is simplified to:
fiðt þ dt; xþ eidtÞ ¼ fiðt; xÞ �
1

s
ðfi � f eq

i Þ þ widt
c2s

ðF � eiÞ: ð8Þ
2.2. Solid domain

In the current study, we neglect the inertia and gravity terms, thus the solidmomentum equation reduces to
r � rs ¼ 0; ð9Þ

where rs is the Cauchy–Green stress tensor. In this paper, we assume that the solid material satisfies the

neo-Hookean constitutive law with the strain energy density [22]:
W ¼ C1 I1I
�1

3

3 � 3
� 	

þ K
2
ðJ � 1Þ2; ð10Þ
where C1 is the shear modulus and K is the bulk modulus to model the material compressibility. I1 and I3
are the first and the third invariants of the Green�s deformation tenor respectively. J = det(Fd), Fd is the

deformation gradient tension defined by:
Fd ¼
ox

oX0

;

where X0 denotes the reference configuration and x denotes the current configuration. The left Cauchy–

Green tensor is defined as B ¼ FdF
T
d , and the Cauchy–Green stress can be written as:
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ðrsÞij ¼ 2C1J�5
3 Bij �

1

3
Bkkdij

� �
þ KðJ � 1Þdij: ð11Þ
The incompressibility of the solid material is approximated by taking a large K value.
2.3. LBM-DLM/FD method

The basic idea of the fictitious domain method is to extend a problem on a geometrically complex

domain to a larger simpler domain (fictitious domain) [15]. The distributed Lagrange multiplier (DLM)

is introduced to enforce the velocity constraints on the solid surface and in the solid domain. From the min-

imization of the energy principle, Baaijens first derived the DLM/FD formulation for a fluid/elastic–solid

system as follows [17]:

The solid equation:
Z
Xs

ðrusÞ : rs dXs þ
Z
C
k � us dC ¼ 0: ð12Þ
The fluid equations,
Z
Xf

qf

ouf

ot
þ uf � ruf

� �
� uf dXf þ

Z
Xf

�pIþ g ruf þ ðrufÞT
� 	� 	

: ruf dXf �
Z
C
k � uf dC ¼ 0; ð13Þ

Z
Xf

r � ufð Þq dXf ¼ 0 ð14Þ
and the velocity constraint equation
Z
C

us � ufð Þ � c dC ¼ 0: ð15Þ
In above equations, p is the pressure, g is the fluid dynamic viscosity, uf, q, us and c are the variances of

the fluid velocity, the fluid pressure, the solid velocity or displacement and the Lagrange multiplier k,

respectively. In the fictitious domain method, the fluid domain Xf includes the real fluid domain and

the fictitious fluid domain (i.e., the solid domain Xs). The feature of the Baaijens� formulation is that

the Lagrange multiplier is defined on the fluid–solid interface C to enforce the no-slip velocity constraint

there. A more general DLM/FD formulation has been proposed by Yu recently, where the Lagrange

multiplier is distributed over the solid domain Xs [19] and the effects of the inertia and body force terms
are considered:
Z

Xs

qs � qfð Þ dus
dt

� qsfs � qf ffð Þ
� �

� us dXs þ
Z
Xs

rs � rfð Þ : rus dXs þ
Z
Xs

k � us dXs ¼ 0; ð16Þ
here ff and fs denote the fluid and solid body-forces, respectively. If we neglect the inertia and body force

terms, Eq. (16) reduces to:
Z
Xs

rs � rfð Þ : rus dXs þ
Z
Xs

k � us dXs ¼ 0: ð17Þ
If the fluid stress term is negligible compared to the solid stress term in Xs (as observed in [19]), Eq. (17)
further reduces to
Z

Xs

rs : rus dXs þ
Z
Xs

k � us dXs ¼ 0; ð18Þ



X. Shi, N. Phan-Thien / Journal of Computational Physics 206 (2005) 81–94 85
which is almost the same as Eq. (12), and the only difference lies in the integral domain of the Lagrange

multiplier.

In the solid and fluid equations, if the Lagrange multiplier k is replaced with an external force F, we can

substitute Eq. (1) or Eq. (8) for Eqs. (13) and (14) to solve the fluid flow. This is the idea of our LBM-DLM/

FD method.
The solid equation is solved by the Galerkin finite element method. In the finite element method, the

solution on each element is expressed as follows:
ah ¼
Xn
i¼1

aiNi:
Here ai are unknown constants, and Ni are linearly independent basis functions spanning on a n-dimension

subspace. More details on the finite element method can be found in [23]. Nine-node biquadratic elements

are employed for the solid displacement field in the current study. As required by the numerical stability,
the order of the interpolation function of the Lagrange multiplier should be at least one order lower than

that of the displacement [18]. Here, the Lagrange multiplier is considered as piecewise constant on each

element.

As a bridge between the fluid and solid equations, the Lagrange multiplier k should be known on both

fluid and solid meshes. The solid mesh is different from the fluid mesh, which generates a problem in the

implementation: how to project the information from the solid mesh to the fluid mesh. It is easy to get

information at any location on the solid element in the finite element method, but the procedure of locating

the fluid grid in the solid mesh is non-trivial. For simplicity, here we adopt the allocation functions in the
immersed boundary method [24]: we first concentrate the Lagrange multiplier k on the solid element, and

then distribute it to the fluid mesh by a Delta function
kf ¼
X

all elements

dhðxf � xsÞ
Z
Ei

k dEi; ð19Þ
where xf and xs are the locations of the fluid and solid nodes, respectively, and kf denotes the value of k on
the fluid grids. The Delta function is approximated by:
dhðxÞ ¼ dhðxÞ � dhðyÞ; ð20Þ

and
dhðrÞ ¼

1
8h 3� 2 rj j

h þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 rj j

h � 4 rj j
h

� 	2r !
; rj j < h;

1
8h 5� 2 rj j

h �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ 12 rj j

h � 4 rj j
h

� 	2r !
; h 6 rj j 6 2h;

0; otherwise:

8>>>>>>><
>>>>>>>:
From the above descriptions, it is found that some accuracy will be lost because the proposed algorithm

does not describe the interface as accurately as the boundary-fitted algorithm does when the interface is

not aligned with the fluid mesh. But the loss can be compensated by increasing the local mesh resolution.
The multi-block method [25] or the meshless method [26] may be worth considering.

Because the full coupling scheme for the fluid–solid system requires large computational resources, we

decouple the whole system to the fluid and solid sub-problems with the fractional step scheme in the same

manner as in the DLM/FD [15,16,19]. The present fractional step scheme is the following:
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(1) Assuming that f n
i , k

n at the time step n is given, calculate f �
i from Eq. (1) without the collision oper-

ator and then q�
f and u�f from Eq. (2). Here, the superscript ‘‘*’’ denotes an intermediate fractional

step.

(2) Based on Eqs. (11) and (17), find the solid displacement dnþ1
s with the finite element method.

(3) Using the first-order accurate scheme, calculate the solid velocity from unþ1
s ¼ dnþ1

s �dns
dt

. Together with
the velocity constraint over the solid domain and the idea of the fractional time scheme, compute

kn + 1 from the following equation:
Z
Xs

knþ1 � us dXs ¼
Z
Xs

kn � us dXs þ
Z
Xs

q�
f

unþ1
s � u�f

dt

� �
� us dXs: ð21Þ
(4) Calculate the intermediate distribution function f ��
i from:
f ��
i ¼ f �

i þ widt
c2s

knþ1
f � knf

� �
� ei


 �
: ð22Þ
(5) Calculate the distribution function f nþ1
i at the time step n + 1 from:
f nþ1
i ¼ f ��

i � 1

s
ðf ��

i � f eq��
i Þ: ð23Þ
3. Numerical examples

3.1. Flow past a circular cylinder

This example is used to verify the algorithm, with emphasis on checking if the Lagrange multiplier is
correctly imposed. The cylinder is assumed to be rigid and fixed in a uniform flow.

The drag coefficient is defined as:
Cd ¼
F cx

0:5qfU
2
1D

; ð24Þ
and the lift coefficient is defined as:
Cl ¼
F cy

0:5qfU
2
1D

; ð25Þ
where Fcx and Fcy are the streamwise and transverse components of the force on the cylinder with the diam-
eter D, respectively. From the definition of the distributed Lagrange multiplier, for the current numerical

example, we can calculate the force on the cylinder Fc using:
Fc ¼ �
Z
Xs

k dXs; ð26Þ
rather than determining the derivatives of the fluid stress on the cylinder boundary.

Three cases of the Reynolds numbers being 20, 40 and 100 are considered here. The computational con-
ditions are: qf = 1.0, D = 40dx, dx = dt = 1. The size of the rectangular fluid domain is 1100dx · 800dx, and
the velocities on the top, bottom and inlet boundaries are given as U1 = 0.1. The cylinder is divided into

387 elements, as shown in Fig. 1. At the beginning, we set k = 0 and uf = 0.

In the cases of Re = 20 and 40, the flow finally reaches a steady state and a symmetric wake region is

formed at the rear of the cylinder, as illustrated in Fig. 3. The circulation region expands as the Reynolds



Fig. 1. The multiplier mesh.
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number increases. In order to compare our computation to the previous works, we define the non-dimen-

sional recirculation length by L* = Lr/D.

As the Reynolds number exceeds the critical value of 49, the flow becomes unsteady. Vortices are shed

alternatively behind the cylinder and the Kármán vortex street is formed. The flow pattern at Re = 100 is
depicted in Fig. 4. The corresponding time evolutions of the lift coefficient and drag coefficients (Fig. 2)

reveal that the flow reaches a stable oscillatory status eventually. The oscillation frequency becomes an

equally important quantity as the lift and drag coefficients. The dimensionless frequency is the so-called

Strouhal number defined as:
St ¼ fvD
U1

; ð27Þ
where fv is the dimensional frequency.

The quantitative comparisons are summarized in Table 1, and we can see that our results on the drag

and lift coefficients, the wake length and the Strouhal number compare favorably with the previous

results, indicating that the flow problem in the DLM/FD method can be solved with the LBM and

the Lagrange multiplier can be replaced by an external force in the framework of the LBM. The pro-

posed method provides an alternative choice for the implementation of the wall boundary condition
in the LBM.

3.2. Flapping of a slender elastic body in the wake of a cylinder

To demonstrate the versatility of the proposed algorithm, we simulate the flapping of a slender beam in

the wake of a cylinder. The flow schematic is shown in Fig. 5. The size of the beam is 100dx · 1.25dx. The
distance between the fixed tip and the center of the cylinder, L, is 3D, and the distance between the fixed tip

and the centerline of the flow field, h, is 0.5dx. The size of the fluid domain is 900dx · 320dx, and the size of
the cylinder and the boundary conditions are the same as the above numerical example. The material

parameters are given as: C1 = 3, K = 2 · 105. The Reynolds number based on the cylinder diameter is

133. The Lagrange multipliers on the cylinder and the beam are set to be zero initially. We define half

the vertical distance between the centers of a pair of shed vortices as H, and we only give a rough estimate

of H, because its value varies as the vortices move downstream.



Table 1

Comparison with previous studies

Re = 20 Re = 40 Re = 100

Cd L* Cd L* Cd (mean) DCl St

Tuann and Olson [27] 2.25 0.9 1.675 2.1 – – –

Fornberg [28] 2.000 0.91 1.498 2.24 – – –

He and Doolen [30] 2.152 0.921 1.499 2.245 – – –

Niu et al. [33] 2.111 0.96 1.574 2.265

Saiki and Biringen [31] – – – – 1.26 – 0.171

Lai and Peskin [24] – – – – 1.4473 0.6598 0.165

Gresho et al. [29] – – – – 1.76 – 0.18

Chew et al. [34] 1.3668 0.75 0.164

Ding et al. [32] 2.18 0.93 1.713 2.20 1.325 0.56 0.164

Present 2.11 0.86 1.58 2.16 1.36 0.52 0.169

h

L

8U vortex

beam

cylinder 2H

Fig. 5. Schematic of the flow.
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Fig. 9 shows a sequence of vorticity contours during one period of the flapping. The time of each snap-

shot is shown in Fig. 6. Fig. 8 gives the vorticity contour without the beam near the time corresponding to

‘‘a’’ in Fig. 6.

As shown in Fig. 9, the beam swings with the oscillating wake and the vortex structure is modified by the

beam. We find that the beam (except the front part) coincides with the interface between the negative and

positive vorticity regions. The shape of the interface is flatter than the one without the beam in the flow

field, which is ascribed to the dramatic swing of the end part of the beam.

Because the length of the beam is comparable to the wavelength of the Kármán vortex street, the pres-
ence of the beam significantly modifies the local cylinder wake structure at the region where the beam is
a

b

c
d

e

f

Fig. 6. Time sequences.
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Fig. 8. Vorticity contour at Re = 133.

Table 2

Comparison of the parameters

Cd (mean) DCl St (cylinder) St (beam) H/D

Single cylinder 1.503 0.888 0.196 – 0.38

With beam 1.478 1.056 0.187 0.187 2.53
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located (Fig. 9). With the flapping of the beam, the vortices are shed from the free tip, and the new type of

Kármán vortex street is formed. From Figs. 8 and 9 and Table 2, H becomes larger when the beam is intro-

duced to the wake. Fig. 7 illustrates the trajectory of the free tip, and we see that the oscillation amplitude

of the beam free tip is larger than the diameter of the cylinder, which means that the beam throws the

vortices farther away from the center line.

It is interesting that the trajectory of the beam free tip is �8�-shaped, as shown Fig. 7. Zhang et al. [35]
investigated the flapping of a flexible filament in a soap film. Although the elastic body was not in the
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cylinder wake in their experiment, it flapped in the same fashion as observed in our simulations. However,

Fig. 7 shows that the free tip trajectory is not symmetric and this indicates that the flapping motion is sen-

sitive to the beam�s location in the flow field. Although the fixed tip of the beam is only slightly deviated

from the centerline (0.5dx, i.e., 1/80 of the cylinder diameter), a significant asymmetry is observed.

The comparison of the lift coefficients, the drag coefficients and the Strouhal numbers between the two
cases with and without the beam is concluded in Table 2. The data illustrate that the beam in the wake

reduces the drag on the cylinder and that the flapping of the beam amplifies the fluctuation in the lift coef-

ficient. The presence of the flexible beam also reduces the value of the Strouhal number, and it is observed

that the beam flaps at the same frequency as the vortex shedding. The results reveal that there are interac-

tions between the cylinder wake and the flapping of the beam, but the former plays a dominating role.
4. Conclusion

A new method for the fluid–structure interactions has been proposed. This method combines the ideas of

the lattice Boltzmann method and the DLM/FD method, and has the following features:

1. The advantages of the lattice Boltzmann method are preserved. The lattice Boltzmann method has

several distinguished features or advantages, such as the simple evolution equation and the linear con-

vection operator, easy parallelization of the code, direct access to the pressure of the incompressible flow,

and so on [1]. In our algorithm, we only modify the external force term, which does not compromise the
advantages of the LBM.

2. The advantages of the fictitious domain method are inherited by the new method, making it convenient

to deal with the complex boundary and the elastic deformation in fluid–structure interaction problems.

Two numerical examples have been utilized to verify the algorithm and illustrated the power of the meth-

od to deal with fluid/elastic–structure interactions. Although the fluid/rigid–structure interaction is not

involved here, there is no particular difficulty in extending the algorithm to that area. Moreover, our algo-

rithm provides an alternative boundary treatment in the lattice Boltzmann method.
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